Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Anesthesiology ; 134(5): 792-808, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1202432

ABSTRACT

Acute respiratory distress syndrome is characterized by hypoxemia, altered alveolar-capillary permeability, and neutrophil-dominated inflammatory pulmonary edema. Despite decades of research, an effective drug therapy for acute respiratory distress syndrome remains elusive. The ideal pharmacotherapy for acute respiratory distress syndrome should demonstrate antiprotease activity and target injurious inflammatory pathways while maintaining host defense against infection. Furthermore, a drug with a reputable safety profile, low possibility of off-target effects, and well-known pharmacokinetics would be desirable. The endogenous 52-kd serine protease α1-antitrypsin has the potential to be a novel treatment option for acute respiratory distress syndrome. The main function of α1-antitrypsin is as an antiprotease, targeting neutrophil elastase in particular. However, studies have also highlighted the role of α1-antitrypsin in the modulation of inflammation and bacterial clearance. In light of the current SARS-CoV-2 pandemic, the identification of a treatment for acute respiratory distress syndrome is even more pertinent, and α1-antitrypsin has been implicated in the inflammatory response to SARS-CoV-2 infection.


Subject(s)
Neutrophils/drug effects , Proteinase Inhibitory Proteins, Secretory/administration & dosage , Respiratory Distress Syndrome/drug therapy , alpha 1-Antitrypsin/administration & dosage , Animals , COVID-19/enzymology , COVID-19/immunology , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/immunology , Lung/drug effects , Lung/enzymology , Lung/immunology , Neutrophils/enzymology , Neutrophils/immunology , Proteinase Inhibitory Proteins, Secretory/immunology , Respiratory Distress Syndrome/enzymology , Respiratory Distress Syndrome/immunology , alpha 1-Antitrypsin/immunology , COVID-19 Drug Treatment
2.
Biomolecules ; 11(3)2021 03 06.
Article in English | MEDLINE | ID: covidwho-1134010

ABSTRACT

Many individuals infected with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) develop no or only mild symptoms, but some can go on onto develop a spectrum of pathologies including pneumonia, acute respiratory distress syndrome, respiratory failure, systemic inflammation, and multiorgan failure. Many pathogens, viral and non-viral, can elicit these pathologies, which justifies reconsidering whether the target of therapeutic approaches to fight pathogen infections should be (a) the pathogen itself, (b) the pathologies elicited by the pathogen interaction with the human host, or (c) a combination of both. While little is known about the immunopathology of SARS-CoV-2, it is well-established that the above-mentioned pathologies are associated with hyper-inflammation, tissue damage, and the perturbation of target organ metabolism. Mounting evidence has shown that these processes are regulated by endoproteinases (particularly, matrix metalloproteinases (MMPs)). Here, we review what is known about the roles played by MMPs in the development of COVID-19 and postulate a mechanism by which MMPs could influence energy metabolism in target organs, such as the lung. Finally, we discuss the suitability of MMPs as therapeutic targets to increase the metabolic tolerance of the host to damage inflicted by the pathogen infection, with a focus on SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Lung/physiopathology , Matrix Metalloproteinases/metabolism , Protein Kinases/metabolism , Respiratory Distress Syndrome/metabolism , AMP-Activated Protein Kinase Kinases , COVID-19/enzymology , COVID-19/physiopathology , COVID-19/virology , Comorbidity , Cytokines/metabolism , Humans , Inflammation/drug therapy , Inflammation/enzymology , Inflammation/metabolism , Inflammation/pathology , Lung/enzymology , Lung/metabolism , Lung/virology , Matrix Metalloproteinase Inhibitors/pharmacology , Respiratory Distress Syndrome/enzymology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects , Signal Transduction/genetics
3.
Front Cell Infect Microbiol ; 10: 589505, 2020.
Article in English | MEDLINE | ID: covidwho-1000069

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemics is a challenge without precedent for the modern science. Acute Respiratory Discomfort Syndrome (ARDS) is the most common immunopathological event in SARS-CoV-2, SARS-CoV, and MERS-CoV infections. Fast lung deterioration results of cytokine storm determined by a robust immunological response leading to ARDS and multiple organ failure. Here, we show cysteine protease Cathepsin L (CatL) involvement with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19 from different points of view. CatL is a lysosomal enzyme that participates in numerous physiological processes, including apoptosis, antigen processing, and extracellular matrix remodeling. CatL is implicated in pathological conditions like invasion and metastasis of tumors, inflammatory status, atherosclerosis, renal disease, diabetes, bone diseases, viral infection, and other diseases. CatL expression is up-regulated during chronic inflammation and is involved in degrading extracellular matrix, an important process for SARS-CoV-2 to enter host cells. In addition, CatL is probably involved in processing SARS-CoV-2 spike protein. As its inhibition is detrimental to SARS-CoV-2 infection and possibly exit from cells during late stages of infection, CatL could have been considered a valuable therapeutic target. Therefore, we describe here some drugs already in the market with potential CatL inhibiting capacity that could be used to treat COVID-19 patients. In addition, we discuss the possible role of host genetics in the etiology and spreading of the disease.


Subject(s)
COVID-19/complications , Cathepsin L/physiology , Pandemics , Respiratory Distress Syndrome/enzymology , SARS-CoV-2/physiology , Acute Kidney Injury/etiology , Amantadine/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , Cathepsin L/antagonists & inhibitors , Cathepsin L/genetics , Chloroquine/therapeutic use , Cysteine Proteinase Inhibitors/therapeutic use , Genetic Predisposition to Disease , Heparin/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Lysosomes/enzymology , Molecular Targeted Therapy , Receptors, Virus/metabolism , Respiratory Distress Syndrome/etiology , SARS-CoV-2/ultrastructure , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Teicoplanin/therapeutic use , Virus Internalization , COVID-19 Drug Treatment
4.
J Med Chem ; 63(22): 13258-13265, 2020 11 25.
Article in English | MEDLINE | ID: covidwho-659643

ABSTRACT

Cathepsin C (CatC) is a cysteine dipeptidyl aminopeptidase that activates most of tissue-degrading elastase-related serine proteases. Thus, CatC appears as a potential therapeutic target to impair protease-driven tissue degradation in chronic inflammatory and autoimmune diseases. A depletion of proinflammatory elastase-related proteases in neutrophils is observed in patients with CatC deficiency (Papillon-Lefèvre syndrome). To address and counterbalance unwanted effects of elastase-related proteases, chemical inhibitors of CatC are being evaluated in preclinical and clinical trials. Neutrophils may contribute to the diffuse alveolar inflammation seen in acute respiratory distress syndrome (ARDS) which is currently a growing challenge for intensive care units due to the outbreak of the COVID-19 pandemic. Elimination of elastase-related neutrophil proteases may reduce the progression of lung injury in these patients. Pharmacological CatC inhibition could be a potential therapeutic strategy to prevent the irreversible pulmonary failure threatening the life of COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Cathepsin C/antagonists & inhibitors , Lung/drug effects , Protease Inhibitors/pharmacology , Respiratory Distress Syndrome/drug therapy , Animals , COVID-19/enzymology , Cell Line, Tumor , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , Lung/immunology , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/enzymology , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , Respiratory Distress Syndrome/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL